Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38676788

RESUMO

Alcohol, a widely commercialized psychotropic drug, and the benzodiazepine Flunitrazepam, an anxiolytic widely prescribed for patients with anxiety and insomnia problems, are well known drugs and both act on the central nervous system. The misuse and the association of these two drugs are public health concerns in several countries and could cause momentary, long-lasting and even lethal neurophysiological problems due to the potentiation of their adverse effects in synergy. The present study observed the result of the association of these drugs on electrophysiological responses in the brain, heart, and respiratory rate in Wistar rats. 8 experimental groups were determined: control, one alcohol group (20% at a dose of 1 ml/100 g VO), three Flunitrazepam groups (doses 0.1; 0.2 and 0.3 mg/kg) and three alcohol-Flunitrazepam groups (20% at a dose of 1 ml/100 g VO of alcohol, combined with 0.1; 0.2 and 0.3 mg/kg of Flunitrazepam, respectively). The results showed that there was a more pronounced reduction in alpha and theta wave power in the alcohol-Flunitrazepam groups, a decrease in the power of beta oscillations and greater sedation. There was a progressive decrease in respiratory rate linked to the increase of Flunitrazepam dose in the alcohol-Flunitrazepam associated administration. It was observed alteration in heart rate and Q-T interval in high doses of Flunitrazepam. Therefore, we conclude that the association alcohol-Flunitrazepam presented deepening of depressant synergistic effects according to the increase in the dose of the benzodiazepine, and this could cause alterations in low frequency brain oscillations, breathing, and hemodynamics of the patient.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38218568

RESUMO

Nile tilapia, Oreochromis niloticus, is the most cultivated fish species in the world, due to its low cost, high growth rate, environmental adaptability, and resistance to disease and stress. Anesthetics for fish become necessary in management because they minimize mortality during transport and maintenance of ponds, one of the most used anesthetics is clove oil, which has eugenol as the major substance, representing 90-95 % of clove oil. The present study evaluates the effect of eugenol on cardiac activity in Oreochromis niloticus specimens and relates it to behavioral data to determine a concentration window for safe anesthesia. For the comportamental analysis, was used five treatments (50, 75, 100, 125, and 150 µL·L-1) were evaluated and for the eletrocardiographic test was used seven groups (Control, Vehicle, 50, 75, 100, 125, and 150 µL·L-1), n = 9/treatment, totaling 108 animals. Behavioral and electrocardiographic tests were performed on all treatments during induction and recovery. The results of the behavioral tests demonstrated the reversibility of the effects with recovery of the posture reflex, varying according to the concentration. The ECG results showed a slow recovery because, at concentrations above 100 µL·L-1, there was no full reversibility of the cardiac effects in the observed experiment time, which could cause greater changes in the tilapia hemodynamics, which led us to identify a window for safe anesthesia. Eugenol is an effective anesthetic in Nile tilapia juveniles when used in concentrations ranging from 50 to 100 µL·L-1, if there is a need for anesthetic deepening, doses above 100 µL·L-1, however, the animals must be monitored due to hemodynamic changes.


Assuntos
Anestesia , Anestésicos , Ciclídeos , Animais , Eugenol/toxicidade , Óleo de Cravo , Banhos , Imersão , Anestésicos/toxicidade , Anestesia/veterinária
3.
Front Pharmacol ; 14: 1289336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089062

RESUMO

Epilepsy is a neuronal disorder characterized by abnormal excitability of the brain, leading to seizures. Only around 66% of the epileptic patients respond adequately to treatment with existing conventional anticonvulsants, making it necessary to investigate new antiepileptic drugs. The growing research into natural products and their pharmacological properties has become increasingly promising, particularly in the study of essential oils, which are already widely used in popular culture for treating various diseases. The present study evaluated the anticonvulsant effects of Lippia origanoides essential oil (LOEO) (100 mg/kg i. p.) compared to diazepam (DZP) (5 mg/kg i. p.), and the combined administration of these two substances to control convulsions induced by pentylenetetrazol (PTZ) (60 mg/kg i. p.). This evaluation was carried out using 108 male Wistar rats, which were divided into two experiments. Experiment 1-Behavioral assessment: The animals were divided into 4 groups (n = 9): (I) saline solution + PTZ, (II) DZP + PTZ, (III) LOEO + PTZ, (IV) LOEO + DZP + PTZ. The convulsive behavior was induced 30 min after the administration of the tested anticonvulsant drugs, and the observation period lasted 30 min. Experiment 2- Electrocorticographic evaluation: The animals were divided into 8 groups (n = 9): (I) saline solution; (II) LOEO; (III) DZP; (IV) LOEO + DZP; (V) saline + PTZ, (VI) DZP + PTZ (VII) LOEO + PTZ, (VIII) LOEO + DZP + PTZ. PTZ was administered 30 min after LOEO and DZP treatments and electrocorticographic activity was assessed for 15 min. For the control groups, electromyographic recordings were performed in the 10th intercostal space to assess respiratory rate. The results demonstrated that Lippia origanoides essential oil increased the latency time for the appearance of isolated clonic seizures without loss of the postural reflex. The animals had a more intense decrease in respiratory rate when combined with LOEO + DZP. EEG recordings showed a reduction in firing amplitude in the LOEO-treated groups. The combining treatment with diazepam resulted in increased anticonvulsant effects. Therefore, treatment with Lippia origanoides essential oil was effective in controlling seizures, and its combination with diazepam may represent a future option for the treatment of difficult-to-control seizures.

4.
PLoS One ; 18(11): e0294754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033148

RESUMO

BACKGROUND: Phosphodiesterase 5 inhibitors (PDE5i) are the first line treatment for erectile dysfunction; however, several articles and case reports have shown central nervous system effects, that can cause seizures in susceptible patients. This study aims to describe the changes caused by the use of Sildenafil and Tadalafil through the analysis of abnormalities expressed in the electrocorticogram (ECoG) of rats and evaluate the seizure threshold response and treatment of seizures with anticonvulsants. MATERIALS AND METHODS: The study used 108 rats (Wistar). Before surgery for electrode placement in dura mater, the animals were randomly separated into 3 experiments for electrocorticogram analysis. Experiment 1: ECoG response to using PD5i (Sildenafil 20mg/kg and Tadalafil 2.6mg/kg p.o.). Experiment 2: ECoG response to the use of PD5i in association with Pentylenetetrazole (PTZ-30 mg/kg i.p.), a convulsive model. Experiment 3: ECoG response to anticonvulsant treatment (Phenytoin, Phenobarbital and Diazepam) of seizures induced by association IPDE5 + PTZ. All recordings were made thirty minutes after administration of the medication and analyzed for ten minutes, only once. We considered statistical significance level of *p<0.05, **p<0.01 and ***p < 0.001. RESULTS: After administration of Sildenafil and Tadalafil, there were increases in the power of recordings in the frequency bands in oscillations in alpha (p = 0.0920) and beta (p = 0.602) when compared to the control group (p<0.001). After the use of Sildenafil and Tadalafil associated with PTZ, greater potency was observed in the recordings during seizures (p<0.001), however, the Sildenafil group showed greater potency when compared to Tadalafil (p<0.05). Phenobarbital and Diazepam showed a better response in controlling discharges triggered by the association between proconvulsant drugs. CONCLUSIONS: PDE5i altered the ECoG recordings in the rats' motor cortexes, demonstrating cerebral asynchrony and potentiating the action of PTZ. These findings demonstrate that PDE5i can lower the seizure threshold.


Assuntos
Inibidores da Fosfodiesterase 5 , Convulsões , Animais , Masculino , Ratos , Anticonvulsivantes/efeitos adversos , Diazepam , Pentilenotetrazol/efeitos adversos , Fenobarbital/efeitos adversos , Inibidores da Fosfodiesterase 5/efeitos adversos , Ratos Wistar , Citrato de Sildenafila/efeitos adversos , Tadalafila/efeitos adversos
5.
Insects ; 14(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37623406

RESUMO

The hemodynamic activity of Melipona flavolineata workers was evaluated during restraint stress for a period of 30 min. The observed parameters were power variation in the elapsed time, and subsequently, six periods of one second were divided and called A, B, C, D, E and F; in each period, the electrocardiographic parameters were evaluated: spike frequency, amplitude, spike intervals and spike duration. The experiment was carried out with eight worker bees of M. flavolineata, for which electrodes of a nickel-chromium alloy were made. The bees were previously anesthetized with isoflurane and properly contained and fixed in a base for stereotaxis in which the electrode was implanted. All these procedures were performed inside a Faraday cage. The results showed power oscillations during the recording, with the highest energy level being between 300 and 600 s. Spike frequency, spike amplitude, interval between spikes and spike duration parameters underwent changes during the restraint stress period. Thus, the cardiac activity of M. flavolineata can be used as a biomarker and can be used to clarify physiological issues or alterations caused by toxic agents and indicate risk factors for these animals.

6.
J Neuropathol Exp Neurol ; 82(9): 787-797, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37558387

RESUMO

Stroke is one of the principal cerebrovascular diseases in human populations and contributes to a majority of the functional impairments in the elderly. Recent discoveries have led to the inclusion of electroencephalography (EEG) in the complementary prognostic evaluation of patients. The present study describes the EEG, behavioral, and histological changes that occur following cerebral ischemia associated with treatment by G1, a potent and selective G protein-coupled estrogen receptor 1 (GPER1) agonist in a rat model. Treatment with G1 attenuated the neurological deficits induced by ischemic stroke from the second day onward, and reduced areas of infarction. Treatment with G1 also improved the total brainwave power, as well as the theta and alpha wave activity, specifically, and restored the delta band power to levels similar to those observed in the controls. Treatment with G1 also attenuated the peaks of harmful activity observed in the EEG indices. These improvements in brainwave activity indicate that GPER1 plays a fundamental role in the mediation of cerebral injury and in the behavioral outcome of ischemic brain injuries, which points to treatment with G1 as a potential pharmacological strategy for the therapy of stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Humanos , Animais , Idoso , AVC Isquêmico/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Infarto Cerebral
7.
PLoS One ; 18(6): e0287681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37390086

RESUMO

The Clibadium spp. is a shrub of occurrence in the Amazon, popularly known as Cunambi. The compounds in the leaves demonstrate ichthyotoxic properties, and its major substance, cunaniol, is a powerful central nervous system stimulant with proconvulsant activity. Few current studies relate behavioral changes to the electrophysiological profile of fish poisoning. This study aimed to describe the behavioral, electromyographic, electroencephalographic, electrocardiographic, and seizure control characteristics of anticonvulsant drugs in Colossoma macropomum submitted to cunaniol intoxication during bathing containing 0.3 µg/L cunaniol. The behavioral test showed rapid evolution presenting excitability and spasms, which were confirmed by the analysis of Electroencephalogram (EEG), Electromyogram (EMG), and changes in cardiac function detected in the ECG. Cunaniol-induced excitability control was evaluated using three anticonvulsant agents: Phenytoin, Phenobarbital, and Diazepam. While phenytoin was not effective in seizure control, diazepam proved to be the most efficient. These results demonstrate the susceptibility of Colossoma macropomum to cunaniol poisoning, given that the central nervous system and electrocardiographic changes were considered severe.


Assuntos
Caraciformes , Eletrocorticografia , Animais , Eletroencefalografia , Anticonvulsivantes/farmacologia , Diazepam
8.
Nutrients ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904206

RESUMO

Ischemic stroke is one of the principal causes of morbidity and mortality around the world. The pathophysiological mechanisms that lead to the formation of the stroke lesions range from the bioenergetic failure of the cells and the intense production of reactive oxygen species to neuroinflammation. The fruit of the açaí palm, Euterpe oleracea Mart. (EO), is consumed by traditional populations in the Brazilian Amazon region, and it is known to have antioxidant and anti-inflammatory properties. We evaluated whether the clarified extract of EO was capable of reducing the area of lesion and promoting neuronal survival following ischemic stroke in rats. Animals submitted to ischemic stroke and treated with EO extract presented a significant improvement in their neurological deficit from the ninth day onward. We also observed a reduction in the extent of the cerebral injury and the preservation of the neurons of the cortical layers. Taken together, our findings indicate that treatment with EO extract in the acute phase following a stroke can trigger signaling pathways that culminate in neuronal survival and promote the partial recovery of neurological scores. However, further detailed studies of the intracellular signaling pathways are needed to better understand the mechanisms involved.


Assuntos
Lesões Encefálicas , Euterpe , AVC Isquêmico , Ratos , Animais , Extratos Vegetais/metabolismo , Antioxidantes/metabolismo , Frutas
9.
Biology (Basel) ; 12(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36671782

RESUMO

The aim of this study was to evaluate the level of neuronal depression in juvenile tambaqui, Colossoma macropomum, exposed to geraniol (GRL) and citronellol (CTL) in immersion baths. A total of 36 juveniles weighing 35.2 ± 9.4 g were used, organised into six experimental groups: I-control (clean water); II-ethanol (water containing the highest volume of ethanol used in the anaesthetic pre-dilution); III-GRL induction (70 µL·L-1); IV-CTL induction (90 µL·L-1); V-GRL recovery; VI-CTL recovery. Electroencephalographic (EEG) recordings were performed for 300 s in each group. EEG tracings of the control and ethanol groups showed regular and similar activity. Upon exposure to the anaesthetics, irregularities were observed in the tracings showing neuronal excitability and increased amplitudes, mainly in the case of CTL. Overall, GRL-exposed fish showed depression of the central nervous system with low and regular tracings throughout induction, presenting a gradual recovery and stable tracings, which were consistent with an adequate general anaesthetic effect. On the other hand, fish exposed to CTL showed altered EEG activity during induction, that could be considered incompatible with an appropriate anaesthetic effect and smooth recovery, presenting high and irregular EEG tracing amplitudes.

10.
Toxins (Basel) ; 14(11)2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36356016

RESUMO

BmooMPα-I has kininogenase activity, cleaving kininogen releasing bradykinin and can hydrolyze angiotensin I at post-proline and aspartic acid positions, generating an inactive peptide. We evaluated the antihypertensive activity of BmooMPα-I in a model of two-kidney, one-clip (2K1C). Wistar rats were divided into groups: Sham, who underwent sham surgery, and 2K1C, who suffered stenosis of the right renal artery. In the second week of hypertension, we started treatment (Vehicle, BmooMPα-I and Losartan) for two weeks. We performed an electrocardiogram and blood and heart collection in the fourth week of hypertension. The 2K1C BmooMPα-I showed a reduction in blood pressure (systolic pressure: 131 ± 2 mmHg; diastolic pressure: 84 ± 2 mmHg versus 174 ± 3 mmHg; 97 ± 4 mmHg, 2K1C Vehicle, p < 0.05), improvement in electrocardiographic parameters (Heart Rate: 297 ± 4 bpm; QRS: 42 ± 0.1 ms; QT: 92 ± 1 ms versus 332 ± 6 bpm; 48 ± 0.2 ms; 122 ± 1 ms, 2K1C Vehicle, p < 0.05), without changing the hematological profile (platelets: 758 ± 67; leukocytes: 3980 ± 326 versus 758 ± 75; 4400 ± 800, 2K1C Vehicle, p > 0.05), with reversal of hypertrophy (left ventricular area: 12.1 ± 0.3; left ventricle wall thickness: 2.5 ± 0.2; septum wall thickness: 2.3 ± 0.06 versus 10.5 ± 0.3; 2.7 ± 0.2; 2.5 ± 0.04, 2K1C Vehicle, p < 0.05) and fibrosis (3.9 ± 0.2 versus 7.4 ± 0.7, 2K1C Vehicle, p < 0.05). We concluded that BmooMPα-I improved blood pressure levels and cardiac remodeling, having a cardioprotective effect.


Assuntos
Bothrops , Venenos de Crotalídeos , Hipertensão Renovascular , Animais , Ratos , Pressão Sanguínea , Venenos de Crotalídeos/farmacologia , Frequência Cardíaca , Hipertensão Renovascular/tratamento farmacológico , Metaloproteases/farmacologia , Ratos Wistar , Remodelação Ventricular
11.
Fish Physiol Biochem ; 48(5): 1413-1425, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36222995

RESUMO

The aim of this study was to evaluate the electrocardiographic responses of Colossoma macropomum exposed to short-term baths using the essential oil of Piper divaricatum (EOPD) as an anaesthetic-like agent in different doses (40, 60, and 80 µL L-1). Cardiac responses throughout and after exposure to EOPD were monitored and evaluated through mean heart rate (HR), duration and amplitude of the QRS complex (ventricular depolarization), and Q-T (ventricular contraction) and R-R (time between two successive QRS complexes) wave intervals. Across all doses, there was a marked depression of the HR, mainly at 80 µL L-1 EOPD. Mean amplitudes recorded for the QRS complex and Q-T interval at 40 µL L-1 EOPD were indistinguishable from the control, which could reinforce this concentration as sufficient and safe to promote fast anaesthesia without affecting cardiac function. Recovery from bradycardia, duration of the R-R interval, and QRS complex were similar at 60 and 80 µL L-1 EOPD; however, the Q-T interval at 80 µL L-1 EOPD revealed a more pronounced cardiac depression in relation to the controls and fish exposed to 60 µL L-1 EOPD. Thus, we conclude that 40 µL L-1 EOPD should suffice to induce fast, deep, and safe anaesthesia in tambaqui juveniles, whereas the concentration of 80 µL L-1 led to a greater depression of the cardiac function, albeit showing effect reversibility.


Assuntos
Anestésicos , Caraciformes , Óleos Voláteis , Piper , Animais , Brânquias , Óleos Voláteis/farmacologia , Anestésicos/farmacologia
12.
Food Chem Toxicol ; 170: 113452, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36244459

RESUMO

Caffeine is a psychoactive substance used worldwide. The present study analyzes the seizure-related behavior and electrocorticographic (ECoG) patterns observed in rats following of a toxic dose of caffeine (150 mg/kg; intraperitoneal). Sixty-three rats were divided into three experiments: 1-Behavior's Description associated with caffeine-induced convulsion; 2- Comparison of the electrocorticographic patterns induced by caffeine and pentylenetetrazole, and 3- Assessment of the electrocorticographic response to antiepileptic drugs (diazepam, phenytoin, and phenobarbital). The behavioral analysis demonstrated tonic-clonic seizures with a loss of postural reflex and a latency of 365.8 s after the caffeine's administration. Caffeine-induced changes in the ECoG were consistent with the development of seizures with rapid evolution and burst potential consistent with the behavioral patterns observed during the caffeine-induced seizure. The ECoG of the brainwaves varied significantly between the seizures caused by caffeine and pentylenetetrazole. The predominant brain forces observed during the seizures were beta-band oscillations. The caffeine-induced seizures were resistant to attempted control with phenytoin and phenobarbital, but responded well to diazepam, which is consistent with a study of Pilocarpine, which showed that diazepam has anticonvulsant effects. These findings are important for the development of effective treatments for caffeine intoxication, in particular for individuals with a low seizure threshold.


Assuntos
Pentilenotetrazol , Fenitoína , Ratos , Animais , Pentilenotetrazol/toxicidade , Fenitoína/farmacologia , Ratos Wistar , Cafeína/toxicidade , Anticonvulsivantes/toxicidade , Convulsões/induzido quimicamente , Diazepam/efeitos adversos , Fenobarbital
13.
Front Cell Neurosci ; 16: 884813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774084

RESUMO

Epilepsy is one of the most common neurological disorders, which occurs due to the instability in the inhibitory and excitatory synaptic transmissions in the brain. However, many patients develop resistance to the available drugs, which results in cell degeneration caused due to inadequate control of the seizures. Curcumin, Curcuma longa, is known to be effective for the treatment of organic disorders and may prevent seizures, reduce oxidative stress, and decrease brain damage. Given this, the present study evaluated the antiepileptic effects of C. longa in comparison with both the diazepam and the combined application of these two substances, in terms of their effects on the brain activity and the potential histopathological changes in the hippocampus. This study used male Wistar rats (age: 10-12 weeks; weight: 260 ± 20 g), which were pretreated for 4 days with either saline, C. longa, diazepam, or C. longa + diazepam; and on the fifth day, pentylenetetrazol (PTZ) was administered to induce the seizure. In the C. longa group, a significant increase was observed in the latency of the onset of seizure-related behavior. Surprisingly, however, the combined treatment resulted in the best control of the seizure-related behavior, with the greatest latency of the onset of spasms and isolated clonic seizures. This group also obtained the best results in the electroencephalographic trace and seizure control, with a reduction in the frequency and amplitude of the spike-waves. In the saline group, PTZ significantly reduced the number of cells present in the CA1 and CA3 regions of the hippocampus, while the combined treatment obtained the best results in terms of the preservation of the neuron-like cells. These findings indicate that C. longa may contribute to the control of both seizures and the cell damage induced by PTZ, and that its association with diazepam may be a potentially effective option for the treatment of epilepsy in the future.

14.
Molecules ; 27(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35684543

RESUMO

Seizures and epilepsy are some of the most common serious neurological disorders, with approximately 80% of patients living in developing/underdeveloped countries. However, about one in three patients do not respond to currently available pharmacological treatments, indicating the need for research into new anticonvulsant drugs (ACDs). The GABAergic system is the main inhibitory system of the brain and has a central role in seizures and the screening of new ACD candidates. It has been demonstrated that the action of agents on endocannabinoid receptors modulates the balance between excitatory and inhibitory neurotransmitters; however, studies on the anticonvulsant properties of endocannabinoids from plant oils are relatively scarce. The Amazon region is an important source of plant oils that can be used for the synthesis of new fatty acid amides, which are compounds analogous to endocannabinoids. The synthesis of such compounds represents an important approach for the development of new anticonvulsant therapies.


Assuntos
Endocanabinoides , Epilepsia , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Endocanabinoides/uso terapêutico , Epilepsia/tratamento farmacológico , Humanos , Óleos de Plantas/uso terapêutico , Plantas , Convulsões/tratamento farmacológico
15.
Artigo em Inglês | MEDLINE | ID: mdl-35760270

RESUMO

Cardiac physiological studies in oysters are scarce and these kinds of responses can be key issues for understanding behavioral and baseline adaptive responses. In this study we characterized the electrocardiogram (ECG) tracing patterns, wave intervals (RR; QT), and complex duration (QRS) of Crassostrea gasar during immersion followed by air exposure, simulating what occurs in a tide cycle. Initially, the ECG was analyzed in the oysters under immersion for 30 min to evaluate the basal recordings (immersion exposure condition). Then, the same animals were removed from the water and the ECG was analyzed for another 30 min to assess cardiac activity under air exposure (air exposure condition). For this, a technique of cardiac recordings was developed, allowing us to analyze, beyond ECG, other cardiac parameters such as the heart rate (HR) in beats per minute, the spectral power of HR, and the amplitude. The basal cardiac parameters analyzed in oysters in the immerse condition clearly show the waves and intervals (R-R: 11.03 ± 0.63 s, P-Q: 2.09 ± 0.06 s), with a normal and regular electrocardiographic tracing and sinus rhythm without alterations. When in the air exposure condition, oysters maintained the ECG tracing of sinus rhythm, but with changes in intervals and a prolonged isoelectric period. Moreover, in this condition, oysters presented a biphasic response: initially (phase I), heart rate increased (9.83 ± 0.98 BPM), and consequently the R-R and P-Q intervals decreased (5.86 ± 2.01 s e 1.91 ± 0.13 s, respectively); in phase II, heart rate (3.68 ± 0.82 BPM) and spectral power (21.26 ± 5.44 mV2/Hz x 10-3) decreased and consequently, the R-R interval increased (14.83 ± 2.92 s). But, the P-Q interval remained (2.45 ± 0.65 s) in phase II. The QRS complex of oysters in both phases decreased (Phase I: 0.57 ± 0.13 s; Phase II: 0.62 ± 0.05 s) compared to the immersion exposure condition (0.79 ± 0.09 s). We conclude that air exposure affected cardiac function in C. gasar leading to arrhythmia in response to the beginning of air exposure, as a means of maintaining oxygen supply, followed by bradycardia to decrease metabolism as a survival strategy. The basal responses of the mangrove oyster in the physiological modulation against the environmental factors of the tidal regime provide information about the species for possible application as model organisms in studies of toxicological evaluation of chemical products and in conservation and sustainability studies.


Assuntos
Crassostrea , Animais , Bradicardia , Crassostrea/fisiologia , Eletrocardiografia/métodos , Coração , Frequência Cardíaca/fisiologia
16.
Front Cell Neurosci ; 16: 872743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634465

RESUMO

Epilepsy is one of the most common neurological diseases globally, resulting from a disorder in brain activity. This condition can be triggered by birth trauma, traumatic brain injury (TBI), infections of the brain and stroke. More than 70 million people suffer seizures caused by neurological abnormalities. Approximately 80% of all epileptic patients reside in low-income conditions or in developing countries, and over 75% of patients do not receive proper treatment. Our previous study found an anticonvulsant property of an extract of Euterpe oleracea stone (EEOS) that caused myorelaxation, sedation, and cardiac and respiratory depression after intraperitoneal administration. The present study investigated through electroencephalographic (EEG) profiling the anticonvulsant protective properties of EEOS in induced convulsing rats. Male Wistar rats were treated with EEOS (300 mg/kg), diazepam (DZP) (5 mg/kg), pentylenetetrazol (PTZ) (60 mg/kg) and flumazenil (FMZ) (0.1 mg/kg) by intraperitoneal (i.p.). Electrodes implanted on the dura mater provided EEG data in which EEOS suppressed seizure deflagration caused by PTZ. In addition, EEOS presented no significant difference in comparison to DZP, which has the same mechanism of action. After FMZ injection, a GABAA receptor antagonist blocked the anticonvulsive effect in both the DZP and EEOS groups, suggesting that EEOS exerts it action on the GABAA receptor at the benzodiazepine (BDZ) subunit.

17.
Endocr Connect ; 11(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35148281

RESUMO

Low plasma levels of vitamin D causes bone mineral change that can precipitate osteopenia and osteoporosis and could aggravate autoimmune diseases, hypertension and diabetes. The demand for vitamin D supplementation becomes necessary; however, the consumption of vitamin D is not without risks, which its toxicity could have potentially serious consequences related to hypervitaminosis D, such as hypercalcemia and cerebral alterations. Thus, the present study describes the electroencephalographic changes caused by supraphysiological doses of vitamin D in the brain electrical dynamics and the electrocardiographic changes. After 4 days of treatment with vitamin D at a dose of 25,000 IU/kg, the serum calcium levels found were increased in comparison with the control group. The electrocorticogram analysis found a reduction in wave activity in the delta, theta, alpha and beta frequency bands. For ECG was observed changes with shortened QT follow-up, which could be related to serum calcium concentration. This study presented important evidence about the cerebral and cardiac alterations caused by high doses of vitamin D, indicating valuable parameters in the screening and decision-making process for diagnosing patients with symptoms suggestive of intoxication.

18.
Aquat Toxicol ; 242: 106044, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34861573

RESUMO

Aluminium (Al) is soluble in acidic waters and may become toxic to organisms. In this study, the acute effects of two Al concentrations were evaluated in the Amazonian fish Bryconops caudomaculatus. Antioxidant responses and lipid damage were assessed in gills, liver and muscle, along with the electrocardiography (ECG) and characterization of cardiac complex and wave intervals. Fish were essayed as follows: two control groups at neutral and acidic pH and two exposure groups at acidic pH (0.3 mg/L and 3.0 mg/L Al). Water samples were collected at 0h, 24h and 48h, for chloride (Cl-), fluoride (F-) and sulphate (SO42-) ion analyses, while total Al was quantified in muscle. Concentrations of Cl- and SO42- were constant over time whereas F- was not detected. Total Al concentrations in water and muscle were concentration-dependent. Antioxidant responses, total antioxidant capacity against peroxyl radicals (ACAP) and glutathione S-transferase were not triggered in fish tissues exposed to 0.3 mg/L Al; however, fish exposed to 3.0 mg/L Al presented increased and reduced ACAP in gills and liver, respectively. No changes in lipoperoxidation levels occurred among groups. Fish exposed to 0.3 mg/L Al showed prolonged intervals in ECG as a reflection of low heart rate (HR), with sinus bradycardia. Moreover, there was a marked prolongation of the PQ interval (time between the atrial activity and the start of ventricular activity), indicating interference on the cardiac cell automaticity. Fish exposed to the highest concentration of Al showed reduced wave intervals as a consequence of increased HR, with sinus arrhythmia, while ECG tracings did not present P waves (atrial contraction), indicating an atrioventricular blockade. In conclusion, 48h exposure sufficed to cause cardiotoxicity in B. caudomaculatus at either Al concentration. However, as oxidative stress was not observed, such cardiac alterations seem to be reversible under the experimental conditions established herein.


Assuntos
Alumínio/toxicidade , Cardiotoxicidade , Caraciformes , Poluentes Químicos da Água , Animais , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Coração/efeitos dos fármacos , Peroxidação de Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
19.
Einstein (Sao Paulo) ; 19: eAO6417, 2021.
Artigo em Inglês, Português | MEDLINE | ID: mdl-34787292

RESUMO

OBJECTIVE: To describe electrocorticographic, electromyographic and electrocardiographic profiles to report the electrophysiological effects of caffeine in Wistar rats. METHODS: Male adult Wistar rats weighing 230g to 250g were used. Rats were allocated to one of two groups, as follows: Group 1, Control, intraperitoneal injection of 0.9% saline solution (n=27); and Group 2, treated with intraperitoneal injection of caffeine (50mg/kg; n=27). The rats were submitted to electrocorticographic, electromyographic and electrocardiographic assessment. RESULTS: Brain oscillations (delta, theta, alpha, beta and gamma) in the frequency range up to 40Hz varied after caffeine administration to rats. Powers in delta and theta oscillations ranges were preponderant. The contractile force of the skeletal striated and cardiac muscles increased. Electrocardiogram analysis revealed shorter RR, QRS and QT intervals under the effect of caffeine. CONCLUSION: In the central nervous system, there was an increase in the delta, theta and alpha amplitude spectrum, which are related to memory encoding and enhanced learning. With regard to skeletal muscle, increased contraction of the gastrocnemius muscle was demonstrated, a clear indication of how caffeine can be used to enhance performance of some physical activities. Electrocardiographic changes observed after caffeine administration are primarily related to increased heart rate and energy consumption.


Assuntos
Cafeína , Contração Muscular , Animais , Cafeína/farmacologia , Eletrocardiografia , Masculino , Músculo Esquelético , Ratos , Ratos Wistar
20.
Fish Physiol Biochem ; 47(6): 1851-1864, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34562200

RESUMO

The Amazonian açai fruit (Euterpe oleracea) has shown promising anticonvulsant properties, comparable to those of diazepam (BDZ) in in vivo models submitted to pentylenetetrazole (PTZ). PTZ is a classic convulsant agent used in studies for the purpose of screening anticonvulsants and investigating the mechanisms of epilepsy. Herein, we aimed to determine, for the first time, the effect of dietary administration of lyophilized E. oleracea (LEO) on PTZ-induced seizures, using juvenile Colossoma macropomum fish (9.1 ± 1.5 g) as a model. A control diet (0.00% LEO) and two levels of LEO inclusion were established: 5.00% and 10.0% LEO (w/w). Fish were divided into five groups (n = 5): control (0.9% physiological solution; i.p.), PTZ (PTZ 150 mg kg-1; i.p.), PTZ LEO 5.00%, PTZ LEO 10.0%, and BDZ-PTZ (BDZ: diazepam 10 mg kg-1; i.p.). In addition to the electroencephalography (EEG), the lipid peroxidation (TBARS) was quantified in the brain, along with the characterization of behavioral responses. Fish receiving PTZ showed intense action potential bursts (APB), which overlapped with a hyperactive behavior. In PTZ LEO 5.00% and 10.0% groups, convulsive behavior was significantly reduced compared to the PTZ group. Fish fed 5.00% or 10.0% LEO and exposed to PTZ showed less excitability and lower mean amplitude in tracings. The inclusion of 10.0% LEO in the diet prevented the increase in mean amplitude of the EEG waves by 80%, without significant differences to the quantified mean amplitude of the BDZ-PTZ group. TBARS concentration was reduced by 60% in the brain of fish fed 10.0% LEO-enriched diets relative to the PTZ-administered group. The results of this study demonstrated the anticonvulsant and protective roles of LEO to the brain, and the dietary inclusion of LEO seems to be promising for the formulation of functional diets. Results of this study may boost the interest on the anti-seizurogenic properties of Euterpe oleracea, including the development of new approaches for the prevention of seizures in humans and animals with low epileptic threshold.


Assuntos
Anticonvulsivantes/uso terapêutico , Encéfalo/efeitos dos fármacos , Caraciformes , Euterpe , Convulsões , Animais , Diazepam/uso terapêutico , Dieta/veterinária , Euterpe/química , Peroxidação de Lipídeos , Pentilenotetrazol , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/veterinária , Substâncias Reativas com Ácido Tiobarbitúrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA